

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	

8 6 5 4 7 9 3 3 5 3

CO-ORDINATED SCIENCES

0654/31

Paper 3 (Core)

October/November 2017

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 27 printed pages and 1 blank page.

BLANK PAGE

1 Fig. 1.1 shows a diagram of a plant cell.

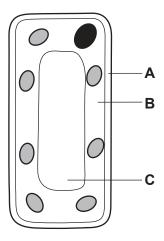


Fig. 1.1

(a)	(i)	Name the parts of the plant cell labelled A, B and C in Fig. 1.1.		
		A		
		В		
		C		
	(ii)	Photosynthesis occurs in chloroplasts.	[3]	
		Add a label line and the letter P to Fig. 1.1 to show a chloroplast.	[1]	
(b)	Stat	te the word equation for photosynthesis.		
		light+++		
		chlorophyll	[2]	

(c) In Table 1.1, tick (✓) the boxes to show which parts are present in **both** animal and plant cells.

Table 1.1

cell wall	
cell membrane	
vacuole filled with sap	
nucleus	
cytoplasm	
chloroplast	

- 2 The Periodic Table shows the chemical elements arranged in order of atomic number.
 - (a) Fig. 2.1 is a diagram of an atom of element X.

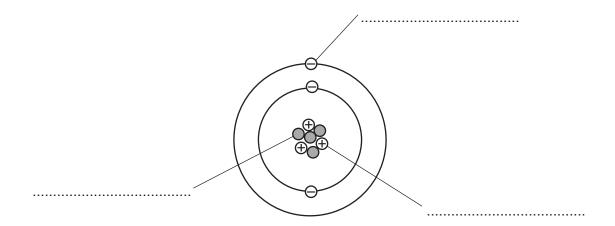


Fig. 2.1

(i)	On Fig. 2.1, label the three types of particle that make up this atom.	[3
(ii)	State the atomic (proton) number of element X .	[1
(iii)	Use the Periodic Table on page 28 to identify element X .	
		.[1
(iv)	State the element in Group VII which is in the same period of the Periodic Table element ${\bf X}$.	as
		[1

(b) Fig. 2.2 shows uses and properties of three elements.

Draw straight lines to match each element with its use and property.

One has been done as an example.

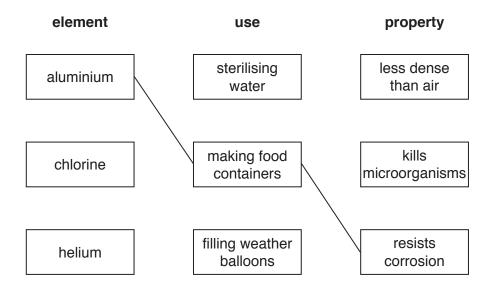


Fig. 2.2

[2]

(a)	Five	e different types of power station are shown.
	A B C D	geothermal hydroelectric gas-fired nuclear oil-fired
	(i)	State the letters of the two types of power station for which the Sun is not the source of energy.
		and[1]
	(ii)	State the letter of one type of power station that uses a renewable energy source.
		[1]
	(iii)	State the letters of the two types of power station that produce carbon dioxide when generating power.
		and[1]
(b)	(i)	Overhead power cables supply electrical energy to a town. It is suggested that less energy is lost during transmission if the resistance of the cables is reduced.
		Suggest one way in which the cables could be changed to lower their resistance.
		[1]
	(ii)	Overhead power cables are hung from pylons.
		Fig. 3.1 shows cables hanging between two pylons.
		Fig. 3.1
		Explain why the cables are hung loosely between the two pylons when they are erected during hot weather.
		ioi

© UCLES 2017 0654/31/O/N/17

3

(c)	In a nu	clear power s	tation, nuclear	r fission of ura	ınium-235 atc	ms takes plac	ce.	
	Describ	oe what happe	ens to the nuc	lei of atoms o	f uranium-235	5 during nucle	ar fission.	
								[1]
(d)		uclear power cles, β-particle		re are many	radioactive	isotopes. The	ese sources	emit
	(i) O	ne of these rad	diations is par	t of the electro	omagnetic sp	ectrum.		
		rite the name ectrum on Fig		on in the corre	ect position in	the incomplet	te electromag	netic
		X-rays		visible light	infra-red			
				Fig. 3.2				 [2]
		ace the three ect.	radiations, α	-particles, β-p	particles and	γ-rays, in orde	er of their ior	iising
		most ionis	sing			least i	onising	[1]

4 (a) Alleles are alternative forms of genes.

Use the words to complete the definition of a gene.

Each word may be used once, more than once or not at all.

	chromoso	ome DNA	gamete	gene	
	genotype	heredity	protein	reproduction	
A gene is	a length of		It is the unit	of	and codes
for a spe	cific				[3]

(b) Fig. 4.1 shows a diagram of a family with their genotypes for tongue rolling.

Tongue rolling is controlled by the dominant allele **T**.

Non-tongue rolling is controlled by the recessive allele t.

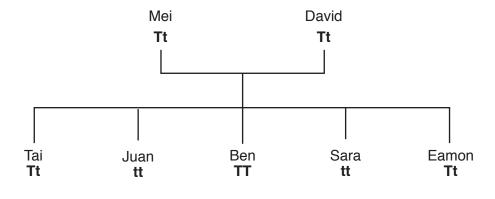


Fig. 4.1

Mei and David have five children.

(i)	State the names of all the children that cannot roll their tongues.					
	[1]					

(ii) Ben has a child.

Circle the correct percentage likelihood that the child will inherit the ability to roll its tongue.

0% 25% 50% 75% 100% [1]

(iii) Give one reason for the percentage you have circled in (ii).

.....[1]

(c) Eamon has a child with someone who has the same genotype as he does.Complete Fig. 4.2 to show the possible genotypes their child could inherit.

		male alleles	
		т	t
female	Т		
alleles	t		

Fig. 4.2

[1]

3	(a) (i)	State the percentage of filtrogen in the all.	
		%	[1]
	(ii)	Nitrogen and oxygen together make up most of the air.	
		Name one other uncombined gaseous element in unpolluted air.	
			[1]

(b) A student investigates the rusting of iron.

Table 5.1 shows his experiments and the results.

Table 5.1

test-tube	experiment	result
A	air and water vapour iron nail	rust appears
В	dry air iron nail	no rust
С	nitrogen gas and water vapour iron nail	no rust

	(i)	Explain why the iron nails in test-tube B and test-tube C do not rust.
		test-tube B
		test-tube C
	(ii)	Predict and explain if there is a change in the mass of test-tube A and its contents during the experiment.
		prediction
		explanation
		[1]
(c)	Nitr	ogen is used to make ammonia, NH ₃ .
	Am	monia gas dissolves in water to make an alkaline solution.
	(i)	Describe a test to show that a solution of ammonia is alkaline.
		test
		result[2]
	(ii)	Suggest the name of the acid that reacts with ammonia to form ammonium nitrate, NH_4NO_3 .
		[1]
	(iii)	Explain why farmers add fertiliser containing ammonium nitrate to soil.
		[2]

6 (a) Many houses in colder countries are designed to conserve thermal energy.

The houses are built with walls that have two layers of bricks.

Polymer foam sheets containing many trapped air bubbles are placed between the layers of bricks.

This is shown in Fig. 6.1.

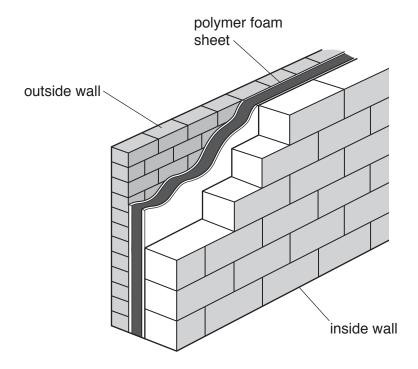


Fig. 6.1

Describe how polymer foam sheets reduce the heat lost by conduction and by convection	n.
conduction	
convection	
	[2]

(b)	A h	ouse has an electric doorbell.
	(i)	Draw a circuit diagram to show a doorbell connected in series with a switch and a battery.
		Use the circuit symbol, \bigcap , for an electric doorbell.
		[2]
	(ii)	The bell produces a sound when a metal hammer strikes the bell.
		Describe how this action produces a sound.
		[1]
	(iii)	The bell emits a loud sound with a high pitch.
		Describe the sound in terms of the amplitude of the sound wave and the frequency of the sound wave.
		amplitude
		frequency
		[2]

(c) Fig. 6.2 shows the circuit diagram for a lamp in a room in the house.

Switches **A** and **B** are 2-way switches.

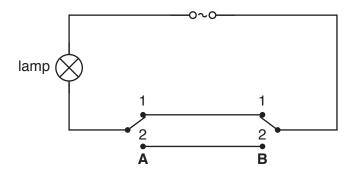


Fig. 6.2

Complete Table 6.1 to show whether the lamp is on or off for each of the switch positions.

Table 6.1

position of switch A	position of switch B	lamp on or off
1	1	
1	2	
2	1	
2	2	

[2]

7 Table 7.1 shows the incidence of new HIV infections in the USA between the years 1980–2010.

Table 7.1

year	number of new HIV infections
1980	20 000
1985	130 000
1990	80 000
1995	50 000
2000	58 000
2005	45 000
2010	40 000

(a) (i) Describe the trend shown by the results in Table 7.1.

			[2]
	(ii)	Calculate the percentage change in new HIV infections between the years 1990 2010.) and
		Show your working.	
			.% [2]
(b)	(i)	State two ways in which HIV can be spread.	
		1	
		2	[2]
	(ii)	Suggest two ways in which governments could try to reduce the spread of HIV.	
		1	
		2	
			[2]

8 Fig. 8.1 shows apparatus a student uses to collect the gas that is made when a solid reacts with a liquid.

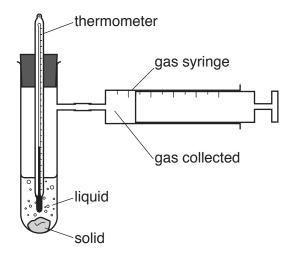


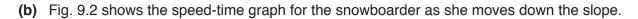
Fig. 8.1

Table 8.1 shows information about five experiments, **P**, **Q**, **R**, **S** and **T**, the student does.

Table 8.1

ovnoriment	liquid	oolid	temperature/°C		ana mada
experiment	liquid solid		at start	after 2 mins	gas made
P dilute sodium hydrogencarbonate		20	17	carbon dioxide	
Q	dilute sulfuric acid	magnesium	20	29	
R	dilute hydrochloric acid	magnesium	20	29	
S	water	calcium	20	32	
Т	dilute hydrochloric acid	calcium carbonate	20	22	

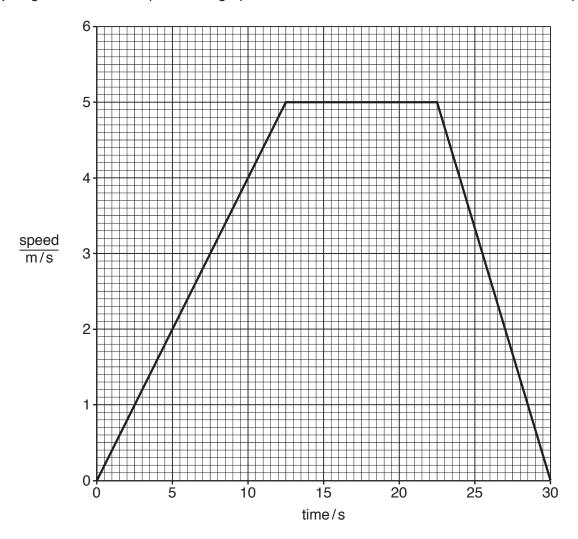
(a)	(i)	Complete Table 8.1 to show the gases made in experiments Q, R, S and T.	[2]
	(ii)	Describe the test for carbon dioxide.	
		test	
		result	
			[2]

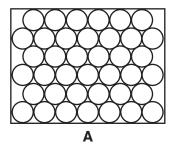

(iii)	Describe the pH changes, if any, in experiment R and in experiment S .
	Explain your answers.
	pH change in R
	explanation
	pH change in S
	explanation
	[2]
(iv)	Using the information in Table 8.1, state whether the reaction in experiment ${\bf P}$ is exothermic or endothermic.
	Explain your answer.
	reaction in P
	explanation
	[1]
(b) (i)	The student repeats experiment T .
	State the effect of increasing the surface area of calcium carbonate on the rate of reaction.
	[1]
(ii)	State the effect on the rate of reaction in experiment T of
	reducing the temperature of the acid,
	increasing the concentration of the acid.
	[2]
	[2]

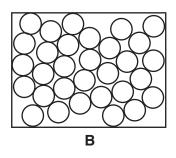
9 Fig. 9.1 shows a snowboarder on a ski slope.

Fig. 9.1

(a) On Fig. 9.1, draw an arrow to indicate the direction in which the force of gravity acts on the snowboarder. [1]




Fig. 9.2


(i) State a time when the snowboarder is accelerating.

s	[1]
•	L.

(ii) State a time when the snowboarder is travelling at her maximum speed.

- (c) Some of the snow is melting into water.
 - (i) Fig. 9.3 shows the arrangement of particles in a gas, liquid and solid.

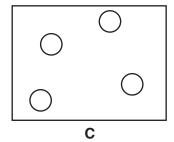


Fig. 9.3

State which diagram, A, B or C, best describes water.

Explain your answer.

diagram

explanation

[1]

(ii) Some snow is steadily heated in a beaker.

The temperature of the snow is measured as it is heated.

Fig. 9.4 shows a graph of the results.

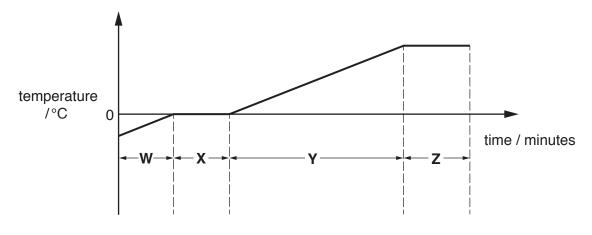


Fig. 9.4

State the section of the graph, W, X, Y or Z, where the snow is melting.

Explain your answer.

melting happens in section

explanation

[2]

10	(a)	A person touc		oan and immediately	removes their hand	d. This is an example of
		Stages in the correct order.		flex arc are listed wi	th the letters A to	E. They are not in the
		effector		Α		
		motor n	eurone	В		
		recepto	r	С		
		relay ne	eurone	D		
		sensory	neurone	E		
		Put the letter	s in the correct or	der to show a reflex	arc. The first one ha	as been done for you.
		С				
						[1]
	(b)	Name the are	ea of the body wh	ere the relay neuron	es are located.	
						[1]
	(c)	Circle two te	rms that can be u	sed to describe a ref	lex action.	
		a	automatic	conscious	rapi	d
			slo	ow .	voluntary	[0]
						[2]
	(d)	The human n	nervous system co	onsists of two parts.		
		Name the tw	o parts.			
		2				[2]
	(e)	brain rather t	at results in a refle han the spinal col explain a reason	rd.	e eye will go to the I	unconscious part of the

.....[2]

11 Petroleum is a liquid fossil fuel.

Petroleum is a mixture containing many different hydrocarbons.

Petroleum is extracted from the Earth and is then processed into useful products.

(a) (i) Name a solid fossil fuel.

	[1]
(ii)	Suggest why petroleum is described as a fossil fuel, but wood is not a fossil fuel.
	[1]

(b) Fractional distillation is used to separate petroleum into simpler, more useful mixtures called fractions.

Fig. 11.1 shows this process and two of the useful fractions obtained.

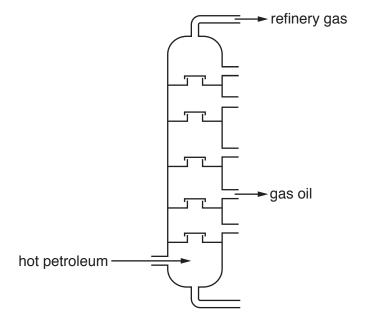


Fig. 11.1

(i)	State one use for each of the fractions shown in Fig. 11.1.
	refinery gas
	gas oil[2
(ii)	Explain why fractional distillation involves physical changes and not chemical changes.

(c) Fig. 11.2 shows the structures of four compounds, $\bf J$, $\bf K$, $\bf L$ and $\bf M$.

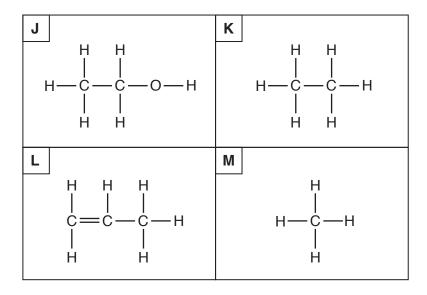


Fig. 11.2

	Sta	te which of the compounds	
	are	alkanes,	
	is e	thanol,	
	is th	ne main compound in natural gas,	
	is a	n unsaturated hydrocarbon.	[4]
(d)		ene, C ₂ H ₄ , is a hydrocarbon that react	ts to form poly(ethene) in a polymerisation reaction.
	(i)	Describe how ethene molecules read	
	()		
			[1]
	(ii)	Hydrocarbons, such as poly(ethene)	are destroyed by burning in air.
		Suggest two compounds that are pro	oduced by burning poly(ethene).
		1	
		2	
			[2]

12 Four swimmers are competing at a swimming pool.

Fig. 12.1 shows the swimmers starting a race.

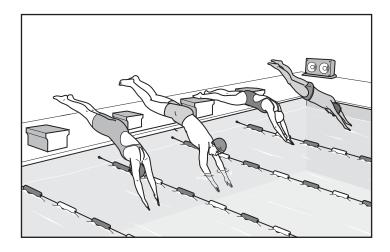


Fig. 12.1

(a) The swimmers start their race when they hear the starting sound from a loudspeaker.

State whether each of the following is an example of a transverse wave or a longitudinal wave.

the sound wave produced by the loudspeaker,

the water waves produced by the swimmers in the swimming pool.

[1]

(b) One of the water waves on the surface of the swimming pool is shown in Fig. 12.2.

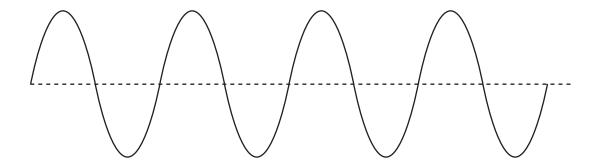


Fig. 12.2

On Fig. 12.2, mark with a double headed arrow (←→) **one** wavelength.

[1]

(c)	The	swimmers dive downwards into the water at the start of the race.	
	Stat	te the type of energy	
	(i)	gained by the swimmers as they start to dive,	[1]
	(ii)	lost by the swimmers as they move downwards.	[1]
(d)	Fig.	12.3 shows two forces acting on a swimmer as he swims.	
	1	rictional force driving force 100 N	
		Fig. 12.3	
	(i)	State the size and direction of the resultant force.	
		size	
		direction	
	/ii\		[2]
	(ii)	State how the speed of the swimmer is changing. Explain your answer.	
			[2]
			[-]
(e)		swimmer gets out of the water and stands by the side of the pool. As he stands there ins to feel colder.	he
	Ехр	lain, in terms of the evaporation of water, why he feels colder.	
			[2]

(f) The swimming pool is filled with 480 m³ of water.

The density of water is 996 kg/m³.

Calculate the mass of water in the swimming pool.

State the formula you use and show your working.

formula

working

(g) There are submerged lamps in the pool. Fig. 12.4 shows two light rays from one of these lamps.

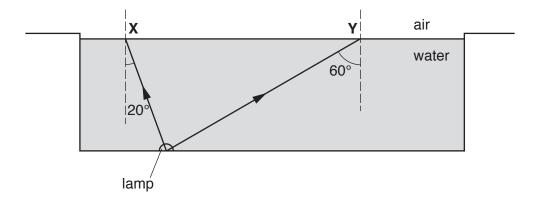


Fig. 12.4

The critical angle for the boundary between water and air is 48°.

On Fig. 12.4, complete the paths of the two rays after they reach the surface at X and Y.

Explain your answer.

		[3

- 13 (a) The circulatory system transports blood to organs in the body.
 - (i) Complete Table 13.1 to show the names of the blood vessels that transport blood towards and away from the organs.

Table 13.1

organ	blood vessel that transports blood towards the organ	blood vessel that transports blood away from the organ
heart	vena cava	
lungs	artery	vein
liver	hepatic vein	hepatic vein
kidney	artery	vein

[4]

(ii) Veins contain structures to ensure the one-way flow of blood.

Name these structures.

Γ4	٦.
11	н
 ι.	J.

(b) Fig. 13.1 is a photograph taken with an electron microscope of red blood cells in the human body.

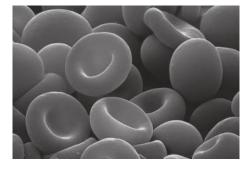


Fig. 13.1

(i) State the function of red blood of
--

[4]	
 111	

(ii) List two other main components of blood.

1	 	 	

2[2]

The Periodic Table of Elements

	=	2	He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	Ru	radon _				
	 							-						\vdash		iodine 127							_
									_	₽ °		_	brd			. <u>o</u> ←		_	ast				_
	5				8	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	84	Ъ	polonium	116	^	livermorium	I
	>				7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Ξ	bismuth 209				
	2				9	ပ	carbon 12	41	Si	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	Ъ	lead 207	114	Εl	flerovium	-
	=				2	В	boron 11	13	PΙ	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204				
											30	Zu	zinc 65	48	р	cadmium 112	80	Нg	mercury 201	112	<u>ნ</u>	copernicium	-
											29	₀	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium	-
dn											28	Ë	nickel 59	46	Pq	palladium 106	78	£	platinum 195	110	Ds	darmstadtium	-
Group											27	ပိ	cobalt 59	45	格	rhodium 103	77	'n	iridium 192	109	Ψ	meitnerium	-
		-	I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	SO	osmium 190	108	£	hassium	-
					J.						25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	pohrium	-
						loc	v.				24	ဝံ	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium	-
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	д	tantalum 181	105	op O	dubnium	-
					e	ato	<u>r</u>				22	F	titanium 48	40	Zr	zirconium 91	72	茔	hafnium 178	104	¥	rutherfordium	1
								_			21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids		
	=				4	Be	beryllium	12	Mg	magnesium 24	20	Ca	calcium 40	88	Š	strontium 88	56	Ва	barium 137	88	Ra	radium	1
	_				3	:=	lithium	1	Na	sodium 23	19	×	potassium 39	37	В	rubidium 85	55	Cs	caesium 133	87	ŗ.	francium	1

7.1	Γn	Intetium	175	103	בֿ	lawrencium	I
70	Υp	ytterbium	173	102	9 N	nobelium	ı
69	Tm	thulium	169	101	Md	mendelevium	ı
89	ш	erbium	167	100	Fm	ferminm	ı
29	웃	holmium	165	66	Es	einsteinium	ı
99	ò	dysprosium	163	86	ರ	californium	ı
65	Д	terbium	159	97	BK	berkelium	ı
64	В	gadolinium	157	96	Cm	curium	ı
63	Ш	europium	152	92	Am	americium	ı
62	Sm	samarium	150	94	Pu	plutonium	ı
61	Pm	promethium	1	93	d N	neptunium	ı
09	PΝ	neodymium	144	92	\supset	uranium	238
29	Ą	praseodymium	141	91	Ра	protactinium	231
28	Ce	cerium	140	06	Т	thorium	232
22	Га	lanthanum	139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.